ANALISIS UNIVARIANTE DEL INDICE DE PRECIOS PERCIBIDOS POR LOS AGRICULTORES*

Por Carlos San Juan Mesonada**

1.1. La serie original

El Indice de Precios Percibidos por los Agricultores recoge la evolución ponderada del conjunto de los precios de los productos agrarios en origen (MAPA, 1977). En el momento de iniciar este estudio disponemos de una serie homogénea de 93 observaciones mensuales comprendidas entre enero de 1976 y septiembre de 1983 que se representan en el gráfico PG-1. Para analizar el comportamiento estacional y la transformación Box-Cox conveniente se tabula la serie por meses y años, con indicación de la evolución media-rango, en el cuadro PC-1. La evolución de las medias anuales respecto a las del período (PG-2) (1) junto con la representación de las medias estacionales (PG-3) completan el análisis gráfico de la serie original. En él se puede apreciar, a pesar de ser una serie dominada por la tendencia al tratarse de precios en pesetas corrientes, una evolución estacional típica de los precios agrarios: creciente, por el agotamiento de las reservas, hasta la época de las principales recolecciones y descendente durante ésta.

Para las tasas intermensuales de variación (aproximadas por ∇ log) se procede de forma similar presentando la tabulación por meses y años y media-rango en el cuadro PC-2 y los gráficos de tasas medias anuales (PG-4) y estacionales (PG-5). Además de confirmar el comportamiento etacional es preciso subrayar cómo se ponen de manifiesto las perturbaciones sufridas por los precios percibidos por los agricultores durante la crisis internacional de las materias primas de 1977, especialmente en el mes de junio.

- (*) Mi agradecimiento a A. Espasa, L. Villanueva y E. Moreno por sus comentarios a este trabajo.
 - (**) Doctor en Economía. Profesor de la Facultad de Ciencias Económicas y Empresariales de la Universidad Complutense de Madrid.
 - (1) Para una correcta interpretación del gráfico PG-2 recuérdese que el año 1983 recoge solo la media enero-septiembre y véase PG-3.

1.2. Heterocedasticidad

Para corregir la heterocedasticidad de la serie original se ha seguido el procedimiento utilizado por Box y Jenkins (1976. p. 328) de emplear las transformaciones Box-Cox (1964) uniparamétrica x^{λ} pero jugando solamente con las alternativas $\lambda=1$, serie original y $\lambda=0$, ésto es log x. Esta opción se justifica por tratarse de una serie económica, y más en concreto de precios, donde es relativamente frecuente que la transformación logarítmica corrija la heterocedasticidad como señala Espasa (1978). Sin embargo, al no ser suficiente, procedemos a obtener las distintas diferenciaciones regulares y estacionales (d,D), donde d,D = 0,1,2 en este caso, tanto para la serie original como para la transformación logarítmica.

Esta información se resume en el Cuadro de Medias y Varianzas PC-3, presentando los gráficos más importantes con los indicativos PG-1 y PG-6 a PG-8. Además en cada caso se obtiene también el correlograma simple y el parcial para contribuir a determinar el nivel adecuado de diferenciación y, una vez determinada cuál es la transformación que convierte en estacionaria la serie, utilizarlos para la identificación del modelo univariante.

Los resultados de este apartado confirman la necesidad de la transformación logarítmica, resultado usual en series de precios, sin embargo no permiten, teniendo en cuenta nuestros conocimientos a priori del problema, decantarse hacia la transformación log (1,0) cuya media es significativamente distinta de cero, frente a log (1,1) a pesar de que esta última tiene una varianza muestral ligeramente superior. En consecuencia se opta por trabajar con ambas transformaciones en la fase de identificación.

1.3. Identificación

En este apartado se trata de identificar un modelo ARIMA (p,d,q) (P,D,Q) del tipo:

$$(1-\phi_1 \text{ B-...-}\phi_p \text{ B}_p) (1-\phi_1' \text{ B-...-}\phi_p' \text{ B}_p) (1-\text{Bd}) (1-\text{BD}) \text{ PERA*} = (1-\theta_1 \text{ B-...-}\theta_q \text{ B}_q) (1-\theta_1' \text{ B-...}\theta_Q' \text{ B}_Q) a_t$$
(1)

donde a_t es una perturbación aleatoria (ruido blanco) y PERA* es la transformación logarítmica de la variable PERA (Indice de Precios Percibidos por los Agricultores).

En 1.2. hemos determinado los órdenes de diferenciación (d. D) que pueden ser adecuados para obtener la transformación estacionaria de la serie. Por tanto se trata ahora de determinar los órdenes de los polinomios temporales autorregresivo regular, p, y estacional, P, así

como del de medias móviles regular, q, y estacional, Q. Para ésto, siguiendo la metodología Box-Jenkins (1976), se analizan los correlogramas simple y parcial. También se han utilizado la función de Autorrelación Muestral Extendida (FAME) desarrollada por Tsay y Tiao (1982); Tiao y Tsay (1983); Tsay y Tiao (1983); y el análisis espectral, como complemento en el estudio de la estacionalidad, Nerlove (1964).

Para la estimación del espectro de la serie temporal se ha utilizado en todos los casos un programa (MESPEC) que parte de las observaciones mediante la transformada de Fourier rápida (FFT). De las distintas ventanas (Daniell, Bartlet, Parzen y Tukey) se ha utilizado la de Daniell con longitud variable, escogiendo las ordenadas 1, 3, 5, 7 y 9.

Para la transformación (1,0) PERA* resultan más apropiados los alisamientos del periodograma con una media móvil con longitud de 3 ó 5 ordenadas (gráficos PG-9 y PG-10). El programa calcula también el periodograma acumulado normalizado (PG-11). Las frecuencias correspondientes aproximadamente a dos años así como las mensuales de cuatro y algo superiores a seis, aparecen como las más destacadas. La FAME de la serie (PC-4) indica tres posibilidades AR-MA (2,1), ARMA (1,4) y ARMA (12,12).

Por su parte los correlogramas simple (PG-13), con estructura y parcial (PG-14), con punto de corte en el retardo cuarto, nos llevan a identificar para la parte regular un AR (4). La estacionalidad no parece fácilmente identificable ya que la correlación del retardo 36 puede ser justificada por los valores atípicos de agosto de 1979 y agosto de 1982 distantes 36 períodos y con igual signo (PG-7). Por tanto no se introduce parte estacional y se revisará nuevamente esta decisión a la vista de los residuos. Tampoco se introduce constante de momento ya que se pretende utilizar el modelo con fines de predicción y es evidente que la tasa de inflación no tiene porqué permanecer fija en el futuro. El modelo ARIMA (4,1,0) (0,0,0) se estima con el nombre de PERAMO 3.

Para la transformación (1,1) PERA*, cuyos correlogramas se incluyen en los gráficos PG-14 el simple, y PG-15 el parcial, se identifican dos alternativas; ARIMA (0,1,1) (0,1,1) con el nombre PERA-MO 1 y ARIMA (0,1,1) (2,1,1). Al contrario de lo que sucedía anteriormente, cuando incluso utilizando una regresión con variables artificiales para cada mes del año, no se lograban resultados positivos para determinar el componente estacional, aquí sí que se puede identificar éste con bastante claridad usando los correlogramas. El espectro de (1,1) PERA* ofrece resultados compatibles con estas conclusiones.

1.4. Estimaciones

Los modelos identificados se estiman con el programa de cálculo SCA, primero por máxima verosimilitud condicional para usarlos como preestimaciones de los parámetros en la segunda estimación, esta vez utilizando el algoritmo de máxima verosimilitud exacta. Sin embargo es necesario señalar que el programa realiza la estimación exacta para la parte MA solamente y no para el componente AR.

からからをおからからない。 The Committee of the Committee State (Committee State St

Los resultados se presentan en el cuadro Resumen de Modelos Estimados PC-5 que señala el nombre del modelo, si el procedimiento de estimación converge C, o no, NC; la desviación típica de los residuos del modelo, σ_a ; el número de observaciones efectivas sobre las que se realiza la estimación; la media de los residuos; el estadístico de Bos-Pierce-Lunj para los retardos 14 y 26; los valores significativamente distintos de cero al 95% de confianza de los correlogramas simple y parcial de los residuos; las correlaciones entre parámetros superiores a 0,75 si existen; los valores estimados de los coeficientes mediante el algoritmo de máxima verosimilitud exacta: la relación entre el valor del coeficiente estimado y su desviación típica para determinar si es significativo (T-value >1.96) y, finalmente, los residuos anómalos con indicación de la relación entre su valor y la desviación típica de los residuos.

Además de esta información se tiene en cuenta también el histograma y los coeficientes de apuntamiento y curtosis de los residuos para comprobar su normalidad. La FAME de los residuos se utiliza como complemento de los correlogramas para detectar estructuras residuales. A partir de esta información se selecciona el modelo PE-RAMO 2 como primer candidato de acuerdo con los criterios usuales. Antes de validarlo se reestiman los modelos utilizando igual número de observaciones efectivas, una vez simplificados y eliminados los parámetros que no han resultado significativos, para comprobar que el candidato mantiene la menor desviación típica en los residuos y el resto de sus ventajas. Asímismo para validar la forma reducida a la que denominamos PERAMO 2B, frente a la amplia (PERAMO 2), comprobamos que la suma de cuadrados de los residuos no aumenta. La estabilidad post-muestral del modelo se comprueba introduciendo las nuevas observaciones disponibles hasta ese momento y reestimando (PERAMO 2F).

El modelo finalmente seleccionado es pues

$$(1 + .46 B^{12} + .48B^{24}) (1-B) (1-B^{12}) PERA* = (1 - .39B^{12}) a_t$$

El gráfico de los residuos del modelo (PG-16), sus correlogramas simple (PG-17) y parcial (PG-18) así como la FAME de los residuos

(PC-6) permiten asimilar éstos a un proceso de variables aleatorias incorrelacionadas (ruido blanco). Los residuos pueden considerarse normales dados sus coeficientes de asimetría SK = -.008 (.3) y curtosis K = -.6 (.6) y el histograma (PG-19).

1.5. Predicción

El modelo PERAMO 3 que había sido descartado en la fase anterior se reestima ahora añadiéndole la constante que requiere y eliminando los parámetros no significativos. La forma reducida se admite ya que la suma de cuadrados de los residuos cumple

 $S_R^2 \leq S_a^2$ donde S^2 suma cuadrados y

. 125 < .127 los subíndices R: reducida y a: amplia.

El modelo resultante PERAMO 3F es:

$$(1 - .18B - .25B^4)$$
 $(1-B)$ PERA* = .0097 + a_t

Los modelos con constante suelen ser útiles para explicar el pasado. En este caso significaría que la tasa histórica de inflación del índice de Precios Percibidos por los Agricultores ha sido del 11,64% anual (0.97% mensual).

Sin embargo este tipo de modelos no suelen dar, generalmente, buenos resultados para predecir. Para comprobarlo se comparan las predicciones del modelo con constante (PERAMO 3F) respecto al seleccionado (PERAMO 2B) observando como el primero comete mayores errores en la predicción.

El segundo ejercicio realizado consiste en valorar la evolución de los precios percibidos en los últimos seis meses en el momento de conocerse el dato. Esto es, asumimos que el modelo explica la evolución de la serie en función de su pasado y por tanto la predicción, en este caso un período por delante, refleja cuál sería el valor esperado en ausencia de perturbaciones. El cuadro PC-8 recoge la predicción (columna 3) realizada con datos disponibles hasta el mes anterior (p.e. disponemos del dato de octubre y predecimos noviembre) y el intervalo de confianza (2) de la predicción al 95% de probabilidad (columnas 2 y 4). Una vez publicado el dato, (columna 1) se compara con la predicción (columna 3) obteniéndose el error «de hecho»

⁽²⁾ El intervalo de confianza de la predicción no es realmente simétrico al estar el modelo expresado en logaritmos, sin embargo aquí se ha calculado como si lo fuera siguiendo la práctica usual.

cometido. Si supera la predicción, y más claramente, si se sitúa por encima de la banda superior, debe interpretarse como una aceleración en los precios, este es el caso de octubre de 1983. A continuación se pueden identificar los componentes que más destacadamente han contribuido a esta perturbación, en este caso, cereales, cultivos industriales, frutas, hortalizas y el ganado para abasto con excepción del porcino.

Esta forma de proceder es también útil cuando las desviaciones son pequeñas, por ejemplo la suave desaceleración que se observa en los meses de diciembre de 1983 a febrero de 1984 y el cambio de marzo. La ventaja de este procedimiento reside en su *rapidez* para enjuiciar el dato, así como en la posibilidad de *rectificar* las previsiones mes a mes. Sin embargo cuando el objetivo del análisis es obtener previsiones, por ejemplo, de tasa de inflación anual resulta más interesante el siguiente ejercicio.

Se realizan las predicciones con el modelo a doce períodos por delante y se obtiene la tasa de inflación anual prevista. Posteriormente se revisa la previsión cada vez que obtenemos un nuevo dato mensual. En el cuadro PC-8 se han resumido los resultados obtenidos suponiendo que se trata de obtener la tasa interanual de inflación para los precios percibidos en los años 1983 y 1984 pero comenzamos teniendo datos disponibles solo hasta septiembre de 1983.

Los resultados de este ejercicio de previsión de la tasa de inflación con el modelo ARIMA ponen de manifiesto cómo a medida que vamos disponiendo de más información, no solamente ajustamos mejor la predicción sino que, además, podemos enjuiciar si las tensiones en los precios tienden a acrecentarse (p.e. en octubre y noviembre de 1983) o a disminuir (p.e. a partir de diciembre de 1983) y comparar con los objetivos propuestos.

Sin embargo este procedimiento, aún cuando permite obtener resultados para la toma de decisiones a corto plazo, tiene el inconveniente de que 1º) las prediccions a varios meses por delante tiene una banda de confianza excesivamente amplia en general y 2º) están muy influidas por el comportamiento de los precios en el período reciente.

La solución a estos problemas puede lograrse introduciendo variables explicativas, pero restringiéndonos al nivel univariante existen otras alternativas que pueden ser útiles para analizar la tendencia de los precios. Una de ellas es calcular la T_{12}^{12} (Espasa, A. 1983) en lugar de la T_{12}^{1} (véase PC-8) y otra, calcular la tendencia. Para ello resulta en general preferible utilizar métodos basados en el análisis espectral como el programa Burman; pero si el modelo tiene un or-

den autorregresivo estacional igual o mayor a dos no es posible usar este programa. En este caso se puede utilizar el procedimiento X-11 ARIMA que permite introducir el modelo identificado previamente y calcular la tendencia por el procedimiento X-11. Al estar este método basado en medias móviles largas, el modelo tiene la función de alargar la muestra disponible añadiendo las predicciones y por tanto mejora la estimación de la tendencia en los extremos (Bee Dagum, 1980). De esta forma aproximamos mejor la tendencia en el último período que es lo que usualmente interesa.

2008年12月1日,18月1日,19月1日,1

El componente tendencia-ciclo de los precios percibidos obtenido por este procedimiento y con el modelo PERAMO 2B se recoge en el gráfico PG-20. En el puede apreciarse la tendencia a la desaceleración de los precios agrarios en los primeros meses de 1984.

En resumen puede concluirse de los distintos ejercicios de previsión que con los datos disponibles (hasta febrero de 1984) el objetivo del Gobierno de lograr un crecimiento de los precios agrarios inferior al 6,5% en tasa interanual parece que puede cumplirse; sin embargo existe el riesgo de que las subidas de precios de las frutas y verduras (motivadas por las bajas temperaturas registradas en la primavera) pongan en peligro la desaceleración de los precios percibidos.

PC-1 Indice de Precios Percibidos por los Agricultores tabulado por meses y años y media-rango

				rk.	FRECIOS PERCIBIDOS AGRICULTORES	KCIBIDOS	ACKICUL	TORES				
FECHA	Enero	Febrero	Marzo	Abril	Мауо	Junio	Julio	Agosto	Sep.	Octubre	Nov.	Dic.
9261	5,76	103,5	104,7	105,4	104,9	98,2	96.5	93.3	95.8	0 %0	100	104.3
1977	107,4	108,8	111,6	116,7	112,9	127,3	140.6	135.6	13.7	1203	1,201	12.1
1978	124,7	130,2	129,7	132,6	133.8	138	146.7	146.5	137.0	125,5	1,021	171
1979	149,8	154,7	160,4	163.8	<u>7</u>	165.2	158	146.7	120 0	133,4	130,4	136,5
1980	155,9	158,8	162.2	157.3	145.8	157.6	157.0	140,7	130,0	143,0	145,8	148
1981	168,7	178.4	182	190	175	0,701	6, <u>7, 7</u>	104	154,9	153,3	157,5	164,8
1982	188 3	106.1	301 6	100.	0 ;	1/3	1/3,/	1,6,7	172,7	169,5	177,9	182,3
1983	218.1	218	218.5	6,404 7, ccc	215	219,5	219	204,1	195,8	202,8	201,7	209,5
			610,5	1,777	7,017	5,027	9,512	212,4	216,5	233,0	240,5	245,5
				PRI	ECIOS PE	PRECIOS PERCIBIDOS AGRICUL TORES	AGRICUL	TORES				
	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Sep.	Octubre	Nov.	Dic.
Media Rango	151,3 120,6	156,06 114,5	158,82 113,8	161,69	158,39 110,8	162,66	163,49	159,04	155,64	147,26	148,83	152,63
Fecha	Media	Rango		₩	Media R	Rango						
1976	100,42	13	Σá		156,53							
1978	135,7	7, 22	ž	Name o	-i	4,671						
1979	153,23	26,4										
1980	156,66	19										
1061	30,77	4,12										
1983	217.56	2,1¢										
;	2	<u>}</u>										

PC-2 Tabulación por meses y años y media-rango en tasas (1,0) log PERA

777	Enero	Febrero	Marzo	Abril	Mayo	Junio	Jano	Agosto	sep.	Octubre	IVOV.	
1976		.05972	.01153	١,	00476	1 '	01746	03372	.02644	.01142	.05227	.04031
1977	.01028	.01295	.02541	.04469	03310	.12004	.09937	03621	02162	02596 -	751/07	.00497
8/61	.03012	.04316	00385	.02211	.00901	16080	.06114	00136	0.0050	01830	.00/36	6/000.
6261	.09298	.03219	.03618	.02098	.00122	.00729	04456	—.07421	05536	.03400	.01520	.01498
1980	.05200	.01843	.02118	03068	07592	.07782	.00127	02438	.00583	01038	.02703	16540.
1981	02389	.05591	86610.	.04354	08276	00000	00746	.03396	03973	01879	.04837	.02443
1982	.03238	.04059	.02716	.01673	.04812	.02374	00228	07046	04152	.03513	—.00544	.03794
1983	.04023	00046	.00229	.01904	03194	.02201	02247	01495	.01912			
	Enero	Febrero	Матго	Abril	Mayo	Junio	Julio	Agosto	Sep.	Octubre	Nov.	Dic.
Media	04020	04281	01749	01788	0178802127	.02660	.00844	02767	02092	.00103	.01050	.02410
Rango	.08268		.04003	.07536	.13088		.14393		.08694	1	.12359	.04457
						ı						
Fecha	ha	Media	ia	Rango	0	•			Media	fia	Rango	0
61	9/1	.0078557	7	.12572		2	Media		.008671	711	•	
19	<i>LL</i> 1	.010794		.19136		p¥,	Rango				20281	_
19	178	.010045		.12163		•						
15	620	.0067406	92	.16718								
15	1980	96800		.15374								
15	181	.0084101	11	.13867								
51	284	.011589	_	35811.	~							
31	203	0036519	0.	072167	7.5							

PC-3
Cuadro de medias y varianzas
(P. Percibidos)

Fransformación (d. D)							
i	Media	Media/ Desv. Típica	Varianza	Desviación	Estadísti	Estadístico de Box-Pierce-Ljung	Ljung
		T-Value		upica	14	26	36
0,0)	156,53	40.59	860.9	27 1671			
1,0)	1,29	2.08	7.438	5 0447	,48	698	873
(2,0)	-0.02	-0,003	2.762	7.6300	76,1	39,1	61,2
),1)	16,87	12,31	3,512	12,3325	8	- 231	1 ;
,1)	0,1350	0,1508	2,829	8,0054	23.7	153 41.4	237
0	00.5	63600					4,60
<u>(</u> 6	0.0087	0,0253	0,494	0,2444	734	852	857
· (0;	-0.0004	2,1432 —0 0865	0,19/ دور ر	0,0388*	23,7	33,0	54,3
log (0,1)	0,1124	11.7583	0,222	0,0492	16,2	21,3	45,4
(1,	0,0000	0.0081	0,233	0,0860	114	153	231
		Tools	0,227	0,0323*	24,5	44,6	69.5

FAME

								PC4											
						FAN	IE SII (P. P	FAME SIMPLIFIC (P. Percibidos)	FICA] dos)	DA			:			!			
	0	ı	2	3	4	٠,	9	7	&	6	10	"	12	13	14	15	91	17	18
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	0	0	0	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3)	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
æ	0	0	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· (c	×	0	0	×	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0
. (6	×	0	0	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· _	×	0	×	×	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0
` a	×	×	×	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
` =	×	0	0	×	0	0	0	0	0	0	0	0	0	С	0	0	0	Ó	0
. =	×	0	0	×	0	0	0	0	0	0	0	0	Ü	0	0	0	0	0	0
	×	0	0	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· 63	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
·	×	0	0	0	0	0	0	0	0	0	0	×	0	0	0	0	0	0	0
: -	×	0	0	0	0	0	×	0	×	0	0	0	0	0	0	0	0	0	0
. (5	×	×	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(6	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
, c	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· æ	0	0	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0

RESUMEN DE LOS MODELOS ESTIMADOS Variable: Log PERCIBIDOS

Modelo C/N	C σ _α	Nº Obs.	Media Residuos	$\begin{array}{c} X_{12} \\ Q_{14} Q_{26} \end{array}$	Valores significativos de los r _j Simple Parcial	Correlaciones entre Parámetros > .75
PERAMOI C	0,034				$r_5 = -0.24$ $r_{24} = -0.25$	Ninguna
PERAMO2 C	0,031	56	.002	3,4 19,0	Ninguno	Ninguna
PERAMO3 C	0,038	88	.0083	5,6 10,7	$\begin{array}{cccc} r_{36} = & 0.28 \\ & r_{34} = -0.26 \\ & r_{36} = & 0.19 \end{array}$	Ninguna
PERAMO2B C	0.030	56	.0022	4,3 18,7	Ninguno	Ninguna $\phi_{12} \; \theta_{12} = .50$ RAICES AR - 24I 1.031 MA 2R 1.0806 10I 1.0806
PERAMO2F C	0.032	61			$r_{19} = .27$	AR 24I 1.0307 MA 2 R 1.1018 10I 1.1018
PERAMO3F C	.0368	93	0.0	7.7 13.9	$r_{36} = .27$ $r_{34} =27$ $r_{36} = .20$	Ninguna RAICES AR(4) Parte* R I Módulo -1,0012 1,09 1,480 -1,0012 -1,09 1.480 1,0012 .90 1,348 1,0012 .90 1,348

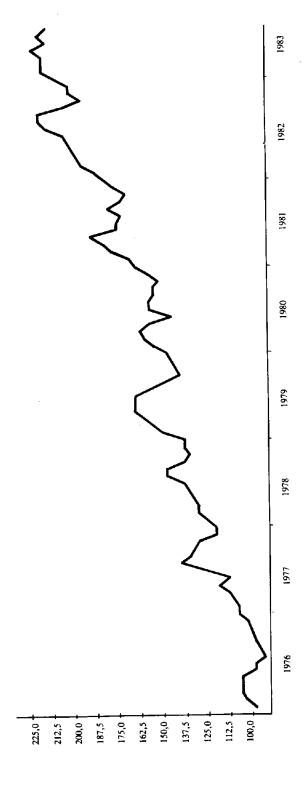
^{*} En las raíces de los polinomios AR ó MA se específica con la letra R la parte real y con la letra I la parte imaginaria, además se recoge también el módulo de las raices.

Coeficientes	T-value de los	RES	IDUOS	ANON	AALOS
del Modelo	coeficientes	Nº Observ.	Año	Mes	$Valor/\sigma_a =$
$\theta_1 = 0.15(0.1108)$	$\theta_1 = 1.35$	18	77	VII	2,8
$\theta_{12} = 1.00(0.0865)$	$\theta_{12} = 11.6$	19	77	VIII	2,3
V12 - 1.1/0(0100027	* 12	23	77	ΧI	-2,3
		65	81	V	-1.9
		68	81	VIII	1,9
	_	77	82	ν	2.0
$\theta_1 =0868 (.1347)$	$\theta_{\uparrow} = .64$		0.	• 7	2.4
$\theta_{12} = .3785 (.1255)$	$\theta_{12} = 3.02$	65	81	V	-2.4
$\phi_{12}4853 (.1242)$ $\phi_{24} =4886 (.1034)$	$ \phi_{12} = 3.91 \phi_{24} = 4.73 $	77 	82	V	2.1
2222 (10)	$\phi_1 = 2,24$	18	77	VI	3,4
$\phi_1 = .2333 (.10)$	$\phi_1 = 2,24$ $\phi_2 = .31$	37	79	l	2,1
$\phi_2 =0334 (.11)$	$\phi_3 = .30$	54	80	VI	2,6
$\phi_3 = .0326 (.11)$ $\phi_4 = .2104 (.10)$	$\phi_4^3 = 2.03$	65	81	V	2,3
$\theta_{12} = .3943$	$\theta_{12} = 3,1$	65	81		$07/\sigma_{\rm a} = 2.3$
$\phi_{12} =4665$	$\phi_{12} = 3.7$	77	82	V	$.063/\sigma_{\rm a} = 2.04$
$\phi_{24} =4798$	$\phi_{12} = 4.7$				
$\theta_{12} = .3124$	$\theta_{12} = 2,3$	77	82	v	$.076/\sigma_{\rm a}^{-} - 2.04$
$\phi_{12} =4651$ $\phi_{24} =4838$	$\phi_{12} = 3.7$ $\phi_{24} = 4.7$	94	83	VIII	$.068/\sigma_{\rm a} = 2.08$
1967	$\phi_1 = 1.9$	18	77	VI	,120
$\phi_{\parallel} = .1867$	$\phi_1 = 1,9$ $\phi_4 = 2,5$	54	80	VI	.087
$\phi_4 =2509$ CTE0097		65	81	V	095
CIE009/	C.D 2,7	80	82	VII	076

PC-6 FAME SIMPLIFICADA RESIDUOS PERAMO2B

→ = <i>ð</i>)	0	7	60	4	s	0	7	8	٥	01		12	13	47	15	- 91	12	×	
1	,	,														.		;	
ı	0	-	0	0	0	0	0	0	0	С	C	0	_	C	5	<	<	•	
H	×	0	0	_	=	<	<	<				> <	= 1	>)	>	>	⊋	
lf	>		•	•	> <	> <	> <	= 1	<u> </u>	>	-	0	0	0	0	0	0	0	
1	((> ;	۰ د	> 4	>	>	0	0	0	0	0	0	0	0	0	C	0	_	
I	ɔ ;	Κ:	-	0	0	0	0	0	0	0	0	0	0	0	C	· C	· -	· c	
I	× ;	× ;	0	0	0	0	0	0	0	0	0	0	0		, c	· C	> <	> <	
$(\Gamma = 3)$	× ;	×	0	0	0	0	0	0	0	0	С	0	0	· c	· C) C	>		
I	×	0	0	0	0	0	0	0	0	0	0	0	· c	· ·) C) c	> <	>	
il	0	0	×	0	0	0	0	0	0	0	0	0	· c	· c	o c	.	> <)	
IJ	0	0	×	0	0	0	0	0	0	C	· C	· c	· c	0	> <	.	> <	.	
II.	0	0	×	0	0	0	0	· c		· c	> <	,	> 0	٠ د	- (5 (-	0	
11	0	0	0	· C	· c			> <	.	> 0	۰ د	- (>	-	0	0	0	0	
- II	×	> >	· c	> >	•	> <	· > c	-	-	→ (D	0	0	0	0	0	0	0	
H	: ⊂	(⊂	> <	< <	> <	> 0) (-	o (0	0	C	0	0	0	0	0	0	
fl	· -	> >	> <	> <	-	-	.	.	-	0	0	0	0	0	0	0	0	0	
li) c	< >	> <	> <	> <	-	- •) ·	-	0	0	0	0	0	0	0	0	0	
lí	> <	< =	> <	> <	> <	-	-	0 '	0	C	0	0	0	0	0	0	0	0	
II	o c	> <	> <	> <	-	٥ ()	-	0	0	0	0	0	0	0	0	0	0	
11	> >	> <	- c	-	-	.	-	0	0	0	0	0	0	0	0	0	0	0	
II.	< ⊂	> <	> <	> <	-	-	o (0 '	0	0	0	0	0	0	0	0	0	0	
	 -	>	۱ د	>	-	>	0	0	0	0	0	0	0	0	0	0	0	0	

PC-7
Indice de precios percibidos por los agricultores
Predicciones 1 período por delante


N.º	94 95 95 96 96 96 96 96 96 96	100
6 STD Predicción	.031 .032 .032 .032 .032	
5 = 1—3 Error predicción	15.8 3,7 - 3,3 - 9,1 -11,7 6,1	
4 Banda inferior	204,2 221,6 232,8 238,5 238,5 231,1	
3 Predicción	217,2 236,8 248,8 254,8 254,8 247,3	
2 Banda superior	230,2 251,9 264,7 271,1 271,1 263,4	
l Valor observado	233,0 240,5 245,5 245,7 245,7 243,1 253,4	
N.º	46 56 56 56 56 56 56 56 56 56 56 56 56 56	100
Fecha	083 N83 D83 E84 F84 M84	A85

PC-8
Predicciones tasa interanual precios percibidos

		S84/S83 O84/O83 N84/N83 D84/D83 E84/E83
Tasa 7:12	Predicha 1984	11,8 18,9 20,0 17,9 14,2
Tasa T' ₁₂	Predicha 1984	6,4 11,1 11,5 11,1 10,7 6,1
Tasa T'_{12}	Predicha 1983	8,3 15,3 16,8 15,6 11,9*
	N.º Obserν.	98
Ultimo dato	disponible Fecha	S83 O83 N83 D83 E84 F84

NOTA: T₁₂. aproximada por log primera diferencia estacional.

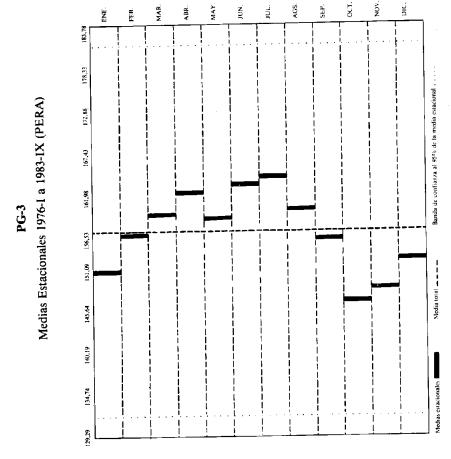
PG-1 Indice de Precios Percibidos por los Agricultores. Serie original. (1976-1 a 1983-1X)

223,41

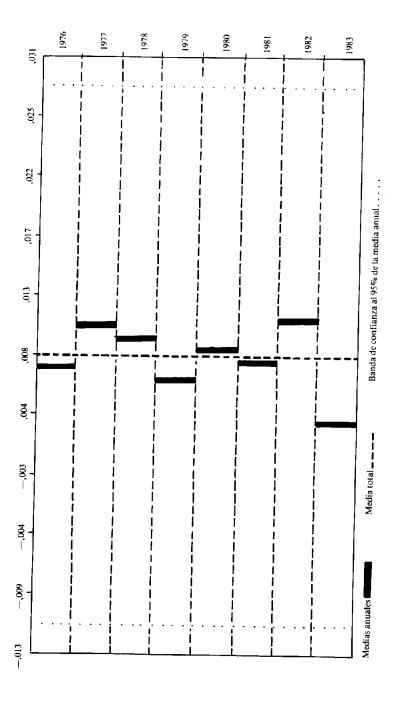
94,56

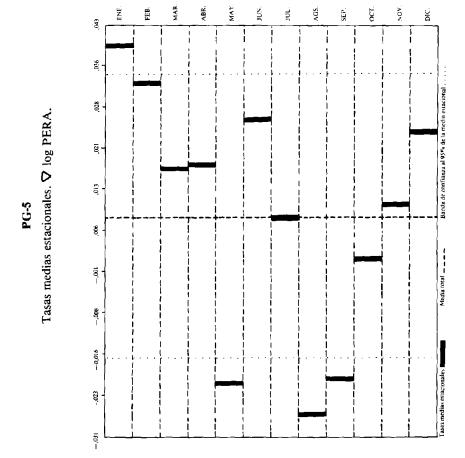
1977

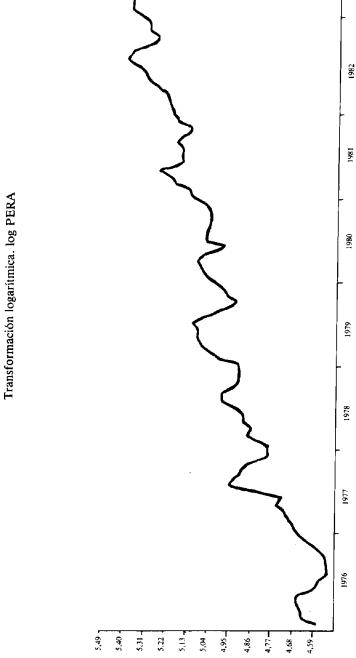
1979

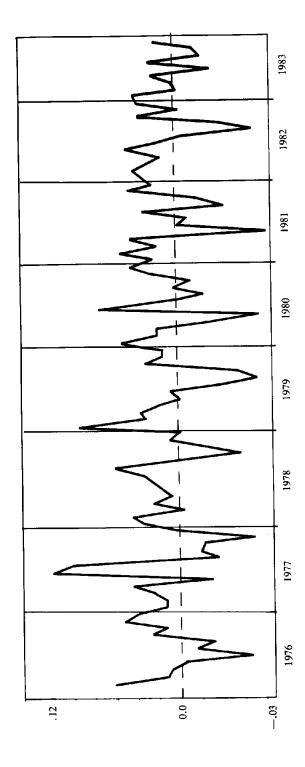

1978

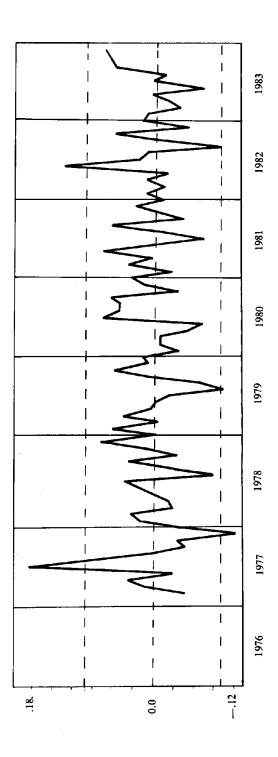
1980


1982

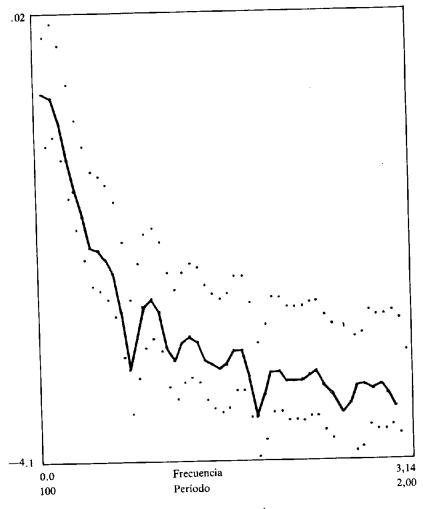

1881


210,53 197,64 Banda de confianza al 95% de la media anual..... 184,76 Medias Anuales 1976-I a 1983-1X (PERA) 171,87 PG-2 158,99 146,11 133,22 Media total 120,34 107,45 Medias anuales

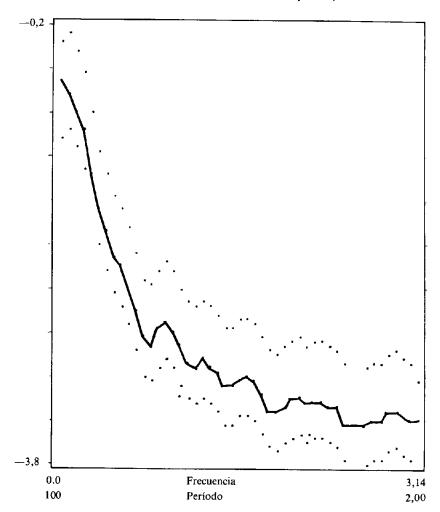




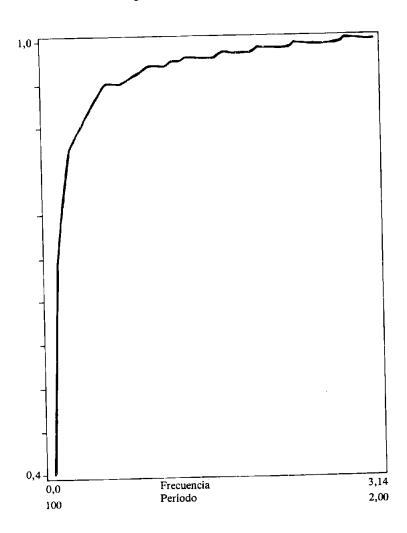
PG-6



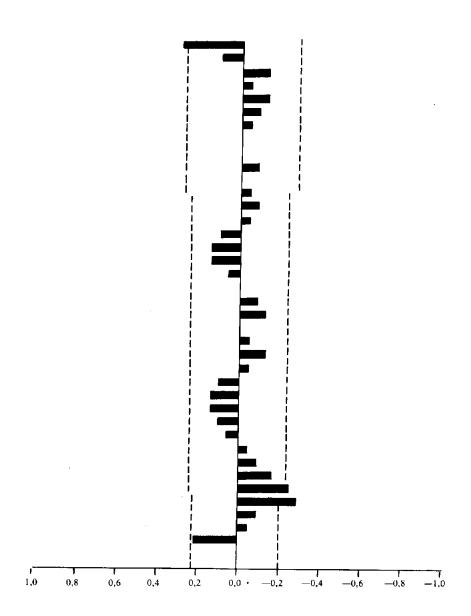
PG-8
Diferencia regular y estacional (1,1) log PERA

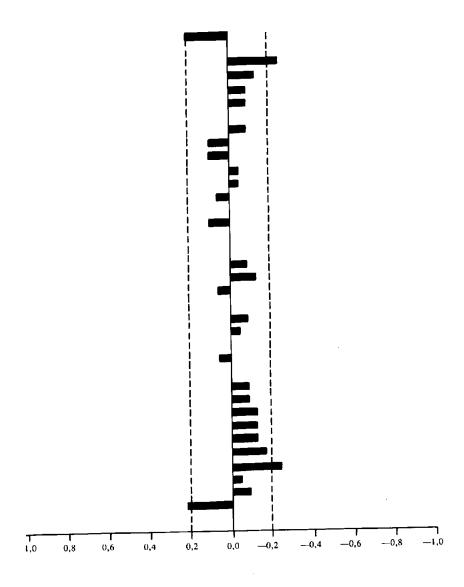


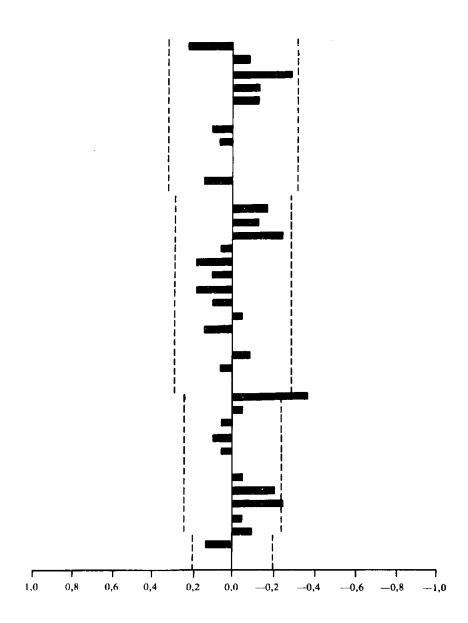
PG-9
Espectro 3 ordenadas (1,0) log PERA
(Logaritmo de la densidad espectral)

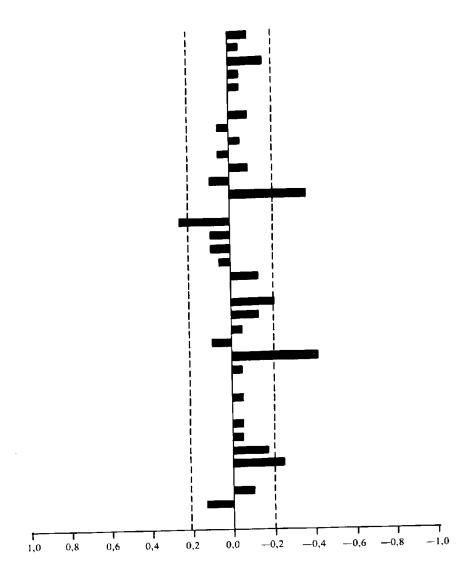


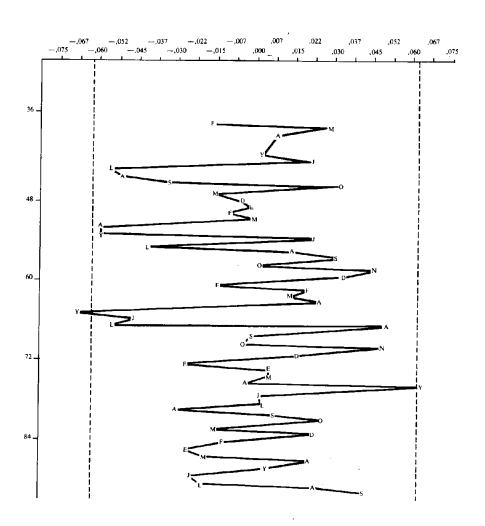
Nota: Bandas de contianza al 95% representadas por...

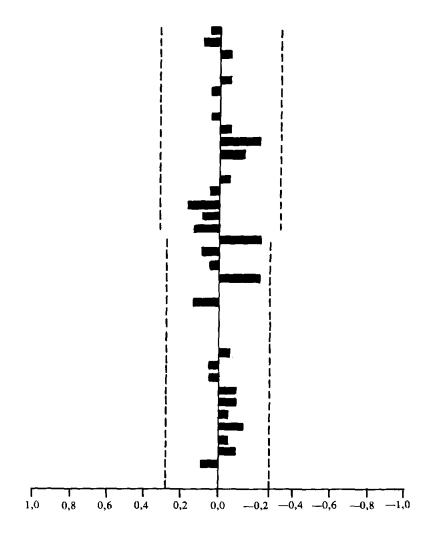

PG-10
Espectro 5 ordenadas (1,0) log PERA
(Logaritmo de la densidad espectral)

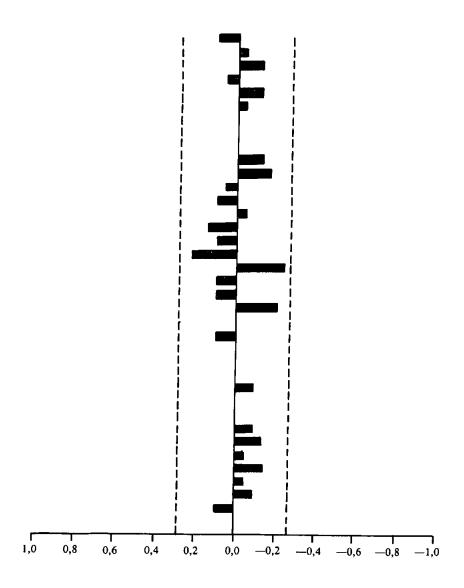

PG-11 Periodograma Acumulado (1.0) log PERA.

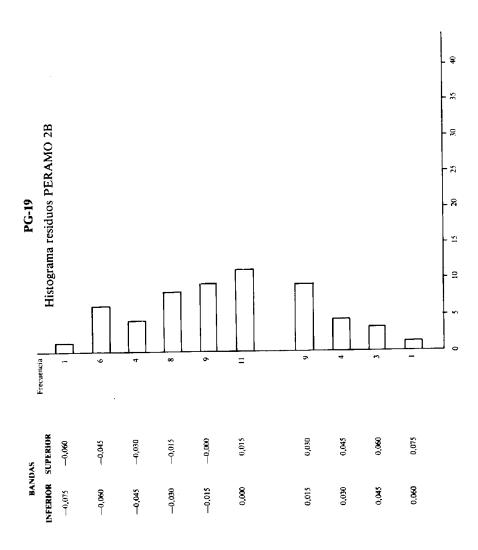

PG-12
Correlograma simple (1.0) log PERA


PG-13 Correlograma parcial (1.0) log PERA

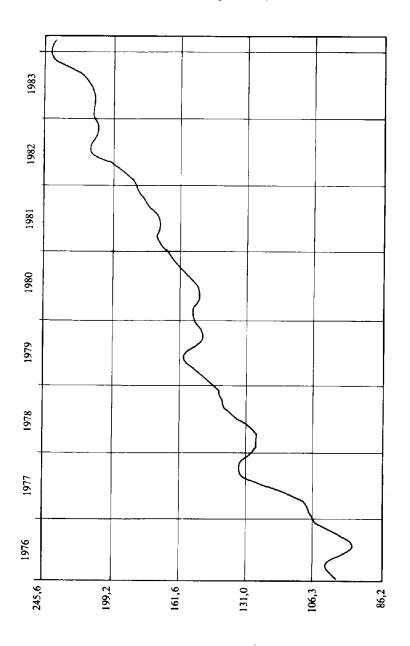

PG-14
Correlograma simple (1.1) log PERA


PG-15
Correlograma parcial (1.1) log PERA


PG-16 Residuos PERAMO 2B



PG-17
Correlograma de los residuos PERAMO 2B



PG-18
Correlograma Parcial residuos PERAMO 2B

PG-20
Tendencia-Ciclo percibidos 1976-I a 1984-II
(Escala semi-logarítmica)

Abreviaturas utilizadas

Indice Mensual de Precios Percibidos por los Agricultores	
(1976 = 100)	PERA
Ministerio de Agricultura, Pesca y Alimentación	MAPA
Autorregresivo	AR
Media Móvil	MA
Autorregresivo Integrado y de Medias Móviles	ARIMA
Función de Transferencia	FT
Función de Autocorrelación Muestral Extendida	FAME

Símbolos

B:	Operador de retardos, $BX_t = X_{t-1}$
∇:	Operador de diferencias, $\nabla = 1 - B$; $\nabla X_t = X_t - X_{t-1}$

log: Logaritmo Neperiano.

Diferencia regular d = 0,1,2d:

Diferencia estacional D = 0.1s, 2s donde s = 12 para datos men-D:

Diferencial regular y estacional $(1-B^d)(1-B^D) = \nabla d \nabla D =$ (d, D): (d,D).

Orden del polinomio AR regular p = 0,1,2,...

p: P: Orden del polinomio AR estacional P = s.n donde n = 0,1,2...y s = 12 para datos mensuales.

Orden del polinomio MA regular q=0,1,2...q:

Orden del polinomio MA estacional Q = s.n donde n = 0,1,2...Q:

y s = 12 en datos mensuales.

$$T_{12}^{1}$$
: Tasa interanual de variación $\left[(E_{t}/E_{t-1}) - 1 \right]$. 100

Tasa de crecimiento media respecto a la media del año anterior
$$\begin{bmatrix} (E+F+...+N+D)_t \\ (E+F+...+N+D)_{t-1} \end{bmatrix} 100$$

Referencias bibliográficas

- Bee Dagum, E., 1980: The X-11 ARIMA Seasonal Adjustment Method. Minister of Supply and Services. Canada.
- Box G.E.P. y D.R. COX. 1964: «An analysis of Transformations», Journal of the Royal Statistical Society. Serie B, pp. 211-252.
- Box, G.E.P. y G.M. Jenkins, 1976: Time Series Analysis Forecasting and Control. Holden Day, 2.ª Edición.
- Espasa, A. 1978 «El Paro Registrado No Agrícola 1964-1976. Un Ejercicio de Análisis Estadístico Univariante de Series Económicas». Banco de España. Estudios Económicos n.º 15, pp. 19-20.
- Espasa, A. 1983: «Modelos de predicción, análisis de coyuntura económica y tasas de crecimiento». ES/1983/5, Banco de España.
- Espasa, A. 1983-84. «Apuntes del curso: Series Temporales y Modelos Econométricos Dinámicos». Banco de España.
- MAPA. 1977: «Metodologías para el cálculo de los índices de precios y salarios agrarios». Documento de trabajo nº 9, julio. MAPA.
- Nerlove, M. 1964: «Spectral Analysis of Seasonal Adjustment Procedures». *Econométrica*, vol. 32, n.º 3, julio, pp. 241-285.
- Tiao, G.C. y R.S. Tsay, 1983: «Consistency Properties of Least Squares Estimates of Autorregressive Parameters in Arma Models». *The Annals of Statistics*, vol. 11, n.º 3, pp. 856-871.
- Tsay, R.S. y G.C. Tiao, 1982: «Consistent Estimates of Autorregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonestationary ARMA Models». *Technical Report* nº 683, julio, Univ. of Wisconsin.
- Tsay, R.S. y G.C. Tiao, 1983: «Identification of Multiplicative ARMA Models for Seasonal Time Series». *Technical Report* nº 7, junio. Univ. of Chicago.

RESUMEN

El análisis univariante del Indice de Precios Percibidos por los Agricultores se realiza utilizando tanto los instrumentos usuales (análisis gráfico y correlogramas) como el análisis espectral, lo que permite identificar el modelo PERAMO. A continuación este modelo es utilizado en distintos ejercicios de predicción. También se presenta el componente tendencia-ciclo de los precios percibidos mediante el uso del programa X-11 ARIMA con el modelo del usuario. Finalmente se discute brevemente la utilidad de los distintos procedimientos de predicción utilizados en el marco univariante.

RÉSUMÈ

L'analyse univariante de l'Indice des Prix Perçus par les Agriculteurs s'effectue en utilisant aussi bien les instruments habituels (analyse graphique et corrélogrammes) que l'analyse spectrale, ce qui permet d'identifier le modèle PERAMO. Ensuite, ce modèle est utilisé pour différents exercises de prévision. On présente aussi la composante tendance-cycle des prix perçus au moyen de l'utilisation du programme X-11 ARIMA avec le modèle de l'utilisateur. Finalement, l'utilité des différents procédés de prévision utilisés dans le cadre univariant est brièvement discutée.

SUMMARY

The univariable analysis of the Index of Prices paid to Farmers is performed using both traditional tools (graphic analysis and correlograms) as well as spectral analysis which is used to identify the PERAMO model. This model is then applied in various forecasting exercies. The trend-cycle component of prices paid is also evaluated through the user's model of the X-11 ARIMA program. Finally, the usefulness of the various forecasting methods within the univariable framework is discussed briefly.

