

Better Training for Safer Food BTSF

Programme Animal Health Prevention and Control of Emerging Animal Diseases

Emerging animal diseases – relevant examples incl Schmallenberg virus infection etienne.thiry@ulg.ac.be

European Commission

Botticelli, the birth of Venus, 1486

Emerging infectious diseases (EID) : number per decades

Global richness map of the geographic origins of EID events from 1940 to 2004

Commission

No. of EID events •1 •2-3 •4-5 •6-7 •8-11

Jones et al., Nature, 2008, 451| doi:10.1038/nature06536

Agenda

- What is an emerging disease?
 - Definition
 - Different types of emerging diseases
- Examples of emerging diseases
 - Zoonotic and vector-borne emerging diseases
 - Zoonotic emerging diseases
 - Vector-borne animal emerging diseases
 - Animal emerging diseases
- The new emerging Schmallenberg virus infection

Agenda

- What is an emerging disease?
 - Definition
 - Different types of emerging diseases
- Examples of emerging diseases
 - Zoonotic and vector-borne emerging diseases
 - Zoonotic emerging diseases
 - Vector-borne animal emerging diseases
 - Animal emerging diseases
- The new emerging Schmallenberg virus infection

Definition of emerging disease

An emerging disease is a new disease whose incidence truly increases in a given population at a given time

Example of (re-)emerging infection

• Foot-and-mouth disease in Great Britain (2001)

Incidence of FMDV in Great Britain

Definition of a reemerging disease

A reemerging disease is a disease that already emerged and disappeared in a given population et whose incidence truly increases in this population at a given time

Re-emerging foot-and-mouth disease in Europe (UK, 2001)

Toma and Thiry, Epidémiol. Santé anim., 2003, 44, 1-11

Agenda

- What is an emerging disease?
 - Definition
 - Different types of emerging diseases
- Examples of emerging diseases
 - Zoonotic and vector-borne emerging diseases
 - Zoonotic emerging diseases
 - Vector-borne animal emerging diseases
 - Animal emerging diseases
- The new emerging Schmallenberg virus infection

Types of emerging (infectious) diseases (EID)

- Emergence in a new geographic area
- New variant
 - Adaptation to a new animal species
 - Increased or modified virulence in the same species
- New pathogen
- Re-emerging pathogen

Types of emerging infectious diseases Emergence in a new geographic area

• Bluetongue in Northern Europe (2006)

Bluetongue outbreaks in Belgium August-November 2006

Dates - Datum

14/11/2006

Types of emerging infectious diseases New variant (1)

• In the same species

Equine influenza

H3N8 subtype antigenic variants

Pantropic canine coronavirus

Same virus as the enteric canine coronavirus Different pathogenesis

Types of emerging infectious diseases New variant (2)

• Crossing the species barrier

• Canine influenza (H3N8)

Infection of dog with equine influenza A virus Adaptation to the dog, and virus with specific « canine » profile

• H1N1 pandemic influenza virus in carnivores (cat, dog, ferret)

Multi reassortant virus (swine-avian-human)

Easy infection of carnivores

No stable infection in carnivore species

Types of emerging infectious diseases New pathogen: Schmallenberg virus

Novel Orthobunyavirus in Cattle, Europe, 2011

Bernd Hoffmann,¹ Matthias Scheuch,¹ Dirk Höper, Ralf Jungblut, Mark Holsteg, Horst Schirrmeier, Michael Eschbaumer, Katja V. Goller, Kerstin Wernike, Melina Fischer, Angele Breithaupt, Thomas C. Mettenleiter, and Martin Beer

In 2011, an unidentified disease in cattle was reported in Germany and the Netherlands. Clinical signs included fever, decreased milk production, and diarrhea. Metagenomic analysis identified a novel orthobunyavirus, which subsequently was isolated from blood of affected animals. Surveillance was initiated to test malformed newborn animals in the affected region.

In summer and autumn 2011, farmers and veterinarians in North Rhine-Westphalia, Germany, and in the Netherlands reported to the animal health services, local diagnostic laboratories, and national research institutes an unidentified disease in dairy cattle with a short period of clear clinical signs, including fever, decreased milk production, and diarrhea. All classical endemic and emerging viruses, such as pestiviruses, bovine herpesvirus type 1, foot-and-mouth disease virus, bluetongue virus,

Figure 1. Location of farms with PCR-positive cattle (blue dots) in North Rhine-Westphalia, Germany.

Types of emerging infectious diseases re-emerging pathogen

• Fox rabies Italy (2009)

Agenda

- What is an emerging disease?
 - Definition
 - Different types of emerging diseases
- Examples of emerging diseases
 - Zoonotic and vector-borne emerging diseases
 - Zoonotic emerging diseases
 - Vector-borne animal emerging diseases
 - Animal emerging diseases
- The new emerging Schmallenberg virus infection

Zoonotic and vector-borne emerging infectious diseases

- Crimean-Congo hemorrhagic fever (Bunyaviridae, Nairovirus)
- *Rift Valley fever (*Bunyaviridae, Phlebovirus)
- *West Nile fever (*Flaviviridae, Flavivirus)

Zoonotic and vector-borne emerging infectious disease

CRIMEAN CONGO HEMORRHAGIC FEVER (CCHF)

Epidemiological cycle - CCHFV

Hyalomma (marginatum) Rhipicephalus (sanguineus), Dermacentor (marginatus), Ixodes ricinus

Transovarian and transmission

CCHF : global distribution

Human cases of CCHF in Europe

Location	Years	Number of cases*	Case fatality rate (%)	Occupation
Southeast Europe				
Crimea	1944-45 ¹	200	10	Military members
Astrakhan	1953–63¹	104	17	Agricultural workers
Rostov	1963–69¹	323	15	Agricultural workers
Bulgaria	1953-74²	1105	17	Agricultural workers, health-care workers
	1975-9616	279	11	Agricultural workers
	1997-0316	138	21	Agricultural workers
Albania	200117	7	0	Agricultural workers, health-care workers
Kosovo	200118	18	33	Agricultural workers
Turkey	2002–05°	500	5	Agricultural workers

CCHF in Europe and around Europe

- Disease demonstrated in human cases:
 - Greece
 - Turkey
 - Kosovo
 - Russia
 - Georgia
- Positive serologies (few cases)
 - France
 - Portugal

Zoonotic and vector-borne emerging infectious disease

RIFT VALLEY FEVER (RVF)

Rift Valley fever: géographical distribution

Enzootic or epizootic/epidemic

Sporadic and/or viral isolation and/or serology

RVF: main human epidemics

Year	Country	Estimated number of cases	Fatalities
1951	South Africa	20 000	nd
1977-1978	Egypt	18 000	623
1987	Senegal, Mauritania	nd	224
1997-1998	Kenya	27 000	170
2000	Saudi Arabie /Yemen	20 000	95
2007	Tanzania	264	109
2006-2007	Kenya	684	155
2007	Somalia	114	51
2007	Sudan	601	211

RVF: transmission

- Ruminant infection
 - Vector-borne
 - Inter-ruminant transmission through virulent matters (placenta, abortus)
- Human infection
 - By insect bites: theroretically possible
 - Handling of and contact with carcasses, tissues and organs, blood of viremic animals (aérosol)

FVR : mosquito-borne transmission

- More than 30 mosquito species are competent
- Aedes
 - Vertical transmission to eggs, resistant to dessiccation
 - Aedes vexans arabiensis, Ae. caballus Ae. aegypti, Ae. Albopictus
- Culex
 - Culex theileri, Culex pipiens, Culex tritaeniorhynchus
- Other genera: Anopheles, Eretmapodites and Mansonia

Abortion storms

Liver: hypertrophy, hemorrhages, necrosis

Diffuse hemorrhages

Zoonotic and vector-borne emerging infectious disease

WEST NILE FEVER (WNF)

WNF: epidemiological cycle

Culex pipiens Culex modestus Numerous competent species of Culex and Aedes

Emergence in North America

Human cases in USA

Year	Cases	Fatalities
1999	62	7
2000	21	2
2001	66	9
2002	4156	284
2003	9862	264
2004	2539	100
2005	3000	119
2006	4268	177
2007	3510	109

WNF outbreaks in Europe and Mediterranean area since 1994

Dauphin et al., Virologie, 2006

Country	Year	Human cases	Human deaths	Equine cases	Equine deaths
Czech Rep	1997	2	0		
France	2000			76	21
	2003	7	0	4	1
	2004			32	7
	2006			5	1
Italy	1998			14	8
	2008	3	0	68	ND
Spain	2004	1	0		
Portugal	2004	2	ND		
Hungary	2003	14	0		
	2008	12	0	10	2
Romania	1996	393	17		
	1997	15	0		
	1998	5	0		
	1999	7	0		
	2000	13	0		
	2008	2	0		
Russia	1999	826	40		
	2000	56	ND		
	2001	64	ND		
	2004	3	0		
	2005	90	3		
	2006	6	0		
	2007	54	2		

Agenda

- What is an emerging disease?
 - Definition
 - Different types of emerging diseases
- Examples of emerging diseases
 - Zoonotic and vector-borne emerging diseases
 - Zoonotic emerging diseases
 - Vector-borne animal emerging diseases
 - Animal emerging diseases
- The new emerging Schmallenberg virus infection

Zoonotic emerging infectious diseases

HENIPAVIRUS INFECTIONS: NIPAH AND HENDRA

PARAMYXOVIRIDAE HENIPAVIRUS

Food infected with bat urine

Hendra and Nipah viruses: bats are reservoir

Flying foxes Pteropus

Hendra virus: zoonotic aspects

- Contact with an infected horse
- Respiratory infection
- Myalgia
- Fever
- Coma
- Meningo-encephalitis
- Death

Nipah disease: zoonotic swine disease

- 1998-1999
- Malaysia
- Pigs
 - Respiratory signs (cough, dyspnea)
 - Nervous signs, seizures
 - Deaths
- Humans
 - Clinical signs similar to Japanese encephalitis
 - 1997: dealy fatal encephalitis in a worker
 - 1998 : 10 deaths
 - 1999 : over 20 workers: 7 ill and 5 dead

Agenda

- What is an emerging disease?
 - Definition
 - Different types of emerging diseases
- Examples of emerging diseases
 - Zoonotic and vector-borne emerging diseases
 - Zoonotic emerging diseases
 - Vector-borne animal emerging diseases
 - Animal emerging diseases
- The new emerging Schmallenberg virus infection

Vector-borne animal emerging infectious disease

AFRICAN SWINE FEVER (ASF)

ASFARVIRIDAE ASFIVIRUS

AFRICAN SWINE FEVER IN BELGIUM IN 1985

The virus is highly resistant and remains infective in fresh and frozen pig meat and other pork products. An epidemic of African swine fever started in Belgium in March 1985. The first outbreak occurred on a small farm. The boar had been fed with waste provided by a neighbour who had returned from holiday in Spain. It is probable that this was the origin of the epidemic. Eleven outbreaks were recorded. The virus was transmitted via contaminated syringes and needles, as well as by animal movement. Despite the high resistance of the ASF virus, the absence of tick vectors and the efficacy of the sanitary measures meant that the epidemic was rapidly brought under control. The disease was eradicated in September of the same year.

African swine fever: A systemic hemorrhagic disease

Epidemiology: transmission

- Vector carriage: soft ticks
 - Iberic peninsula: Ornithodoros erraticus (pigs in oak forests)
 - Africa : Ornithodoros moubata porcinus
- Asymptomatic reservoirs : wild suids

Warthog (*Phacochoerus oethiopicus*)Bush pig (*Potamochoerus porcus*)Giant forest hog (*Hylochoerus meinertzhageni*)

- Contacts between pigs
- Ingestion of contaminated food
- Iatrogenic route

Epidemiology: virus cycle

- Sylvatic cycle:
 - Tick
 - Wild suid (chronic persistent infection)
- Intersect between sylvatic cycle and domestic pigs
 - Onset of outbreaks
- Outbreaks within pigs
 - Sustained by a transmission in the absence of vector
 - Can be initiated without any sylvatic cycle
 - Importance of feed contamination

(Thiry, 2005)

ASF geographical distribution 2009

WAHID OIE © 2011

Blue face

Blue ears

Cyanosis of the bottom of the body

Agenda

- What is an emerging disease?
 - Definition
 - Different types of emerging diseases
- Examples of emerging diseases
 - Zoonotic and vector-borne emerging diseases
 - Zoonotic emerging diseases
 - Vector-borne animal emerging diseases
 - Animal emerging diseases
- The new emerging Schmallenberg virus infection

Animal emerging infectious disease

PESTE DES PETITS RUMINANTS (PPR)

PARAMYXOVIRIDAE MORBILLIVIRUS

Clinical expression of PPR

- Peracute form
 - Nasal discharge, diarrhea
 - Mortality 100%
- Acute form
 - Nasal discharge, diarrhea, oral lesions, abortions
- Subacute and chronic forms
- Differentiation with rinderpest (eradicated)

GLOBAL RINDERPEST ERADICATION PROGRAMME

Why action now... ...is more important than ever

WITHIN the next decade there is a very real prospect that rinderpest will become, like smallpox in humans, a disease of the past. Today, as we enter a new

ш

RINDERPEST

LOBA

millennium, progress made by the Global Rinderpest Eradication Programme (GREP), has limited the disease to a small number of sites in eastern Africa, South Asia and the Middle East. But the spectre of cattle plague, with its devastating epidemics of the past, continues to be a threat as long as these few small areas continue to harbour rinderpest. So, intensified action for these remaining pockets of rinderpest infection is being promoted and co-ordinated by FAO under GREP.

Eradication by 2010

site under investigation

EN DO RINDERPEST ON 28 JUNE 2011 A DEADLY DISEASE WILL BE OFFICIALLY ERADICATED FROM THE EARTH.

Agenda

- What is an emerging disease?
 - Definition
 - Different types of emerging diseases
- Examples of emerging diseases
 - Zoonotic and vector-borne emerging diseases
 - Zoonotic emerging diseases
 - Vector-borne animal emerging diseases
 - Animal emerging diseases
- The new emerging Schmallenberg virus infection

Vector-borne animal emerging infectious disease

SCHMALLENBERG VIRUS INFECTION

BUNYAVIRIDAE ORTHOBUNYAVIRUS

Geographical distribution of Schmallenberg virus infection (22 February 2012)

http://www.defra.gov.uk/animal-diseases/monitoring/

Geographical distribution of Schmallenberg virus infection (26 March 2012)

http://www.defra.gov.uk/animal-diseases/monitoring/

Congenital abnormalities in lambs and calves (fetuses)

Hydranencephaly

Arthrogryposis

Incidence of Schmallenberg virus infection (26th March 2012)

Country	Sheep	Cattle	Goat
Netherlands	104	102	5
Belgium	161	121	2
Germany	825	201	44
France	824 (2)	59	9 (2)
Italy			1
Luxemburg	5 (1)	1	(1)
UK	203	20	
Spain	1		1

Ruminant orthobunyavirus: in vertebrate host: lytic infection In the arthropod: transovarian and venerean transmission chronic infection

Orthobunyavirus

- 170 isolated viruses
 - 48 species

18 serogroups

- Serogroup Simbu (genetic characterisation)
 - Zoonotic viruses: virus Iquitos and Oropouche
 - Ruminant viruses
 - Akabane virus (Asia; Australia) Aino virus (Asia; Australia) Shamonda virus (Nigeria; Japan)
 - + Schmallenberg virus

Schmallenberg virus

VIRAL RNA____ SEGMENT S

96% similarity with Shamonda virus

–VIRAL RNA SEGMENT M

48% similarity with Aino virus

VIRAL RNA SEGMENT L

70% similarity with Akabane virus

3 RNA segments: REASSORTMENT possible

Thiry, 2007

Viremia (RNA PCR) in experimentally infected calves

Hoffmann et al., 2012

Pathogenesis of infection with Schmallenberg virus

Neutralising antibodies General clinical signs: Fever, anorexia, diarrhea Drop of milk production

Pathogenesis of infection with Schmallenberg virus

Congenital abnormalities (depending on the pregnancy time)

Abortions

Schmallenberg in adult animals

- Subclinical infection
 - In sheep
- Non specific clinical signs in dairy cattle
 - Fever
 - Diarrhea
 - Reduction in milk production
- Subclinical infection of pregnant females is of upmost importance

Arthrogryposis

Hydranencephaly – porencephaly – anencephaly

Clinical suspicion

• Suspicion : ovine > bovine > caprine

Adult animal (not pathognomonic)

Decrease of the general condition Drop in milk production

Abortion or stillborn

Congenital abnormalities

• Sampling

Living animal

Whole blood and serum Nasal swab and diarrheic sample

Abortion or stillborn:

Whole fetus Meconium

Diagnosis of Schmallenberg virus

• Virology

• Isolation in cell culture Only experimental

• PCR : quickly set up

• Serology

Seroneutralisation

• ELISA

As for other orthobunyavirus Current setting up

Thank you for your attention

