

Better Training for Safer Food BTSF

The role of reference laboratories

Tanguy Marcotty Institute of Tropical Medicine

Needs for reference laboratories

Reference lab <> regional lab Standardisation of diagnostic procedures

=> make results comparable

Quality assurance

- Proficiency tests
- Production and distribution of proficiency samples
- => Accurate and precise diagnosis
- => Improved disease surveillance

Diagnostic test

A **test** is a procedure for critical evaluation; a means of determining the presence, quality, or truth of something

A **diagnostic test** is a procedure which gives a rapid, convenient and/or inexpensive indication of whether a patient has a certain disease

Properties of a useful diagnostic test

Test **methodology** has been described in detail and can be accurately and reliably **reproduced** Test **accuracy** and **precision** are known The **reference range** has been established (expected range in healthy patients) – **cut-off Sensitivity** and **specificity** have been reliably established by comparison with a **gold standard**

Test accuracy

The accuracy of a laboratory test is its correspondence with the true value Accuracy = f(1/systematic error) Accuracy is maximised by calibrating the required laboratory equipment with reference material and participating in external quality control programmes

Test precision

- *Test precision is a measure of a test's reproducibility when repeated on the same sample*
- Precision = f(1/random error)
- *Precision is monitored by using test control material*
- *Precision must be good enough to distinguish relevant changes in patient's status from analytic variability of test*

Accuracy and Precision

Test sensitivity

- Test sensitivity is the likelihood that a diseased patient has a positive test
- Sensitivity is a conditional probability (definition of 'diseased')
- Sensitivity is determined in a population consisting exclusively of diseased individuals, which are a reflection of the diseased population in which the test will be used (to avoid spectrum bias) Determination of sensitivity requires a gold standard

Test specificity

- Test specificity is the likelihood that a healthy patient has a negative test
- Specificity is a conditional probability (definition of 'healthy')
- Specificity is determined in a population consisting exclusively of healthy individuals, which are a reflection of the healthy population in which the test will be used (to avoid spectrum bias) Determination of specificity requires a gold standard

	Test positive	Test negative
Diseased	?	?
Healthy	?	?

	Test positive	Test negative
Diseased	True positive	
	(TP)	
Healthy	?	

	Test positive	Test negative
Diseased	True positive	?
	(TP)	
Healthy	False positive	
	(FP)	

	Test positive	Test negative	
Diseased	True positive	False negative	
	(TP)	(FN)	
Healthy	False positive	?	
	(FP)		

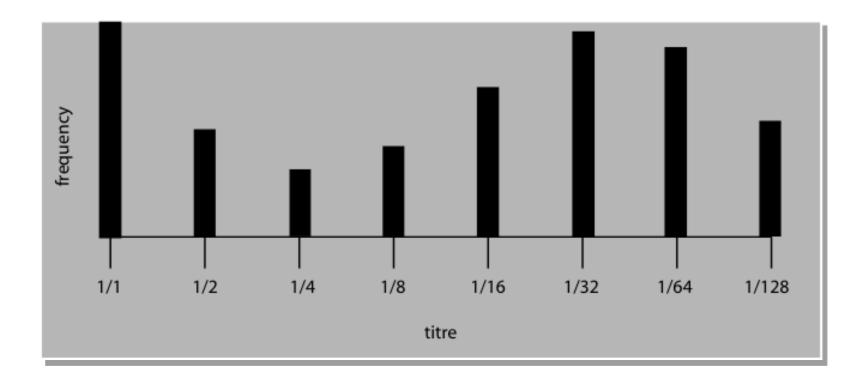
	Test positive	Test negative	
Diseased	True positive	False negative	
	(TP)	(FN)	
Healthy	False positive True negative		
	(FP)	(TN)	

Test sensitivity is the likelihood that a diseased patient has a positive test Test specificity is the likelihood that a healthy patient has a negative test

	Test +	Test -	Total
Diseased	180	20	200
Healthy	40	760	800
Total	220	780	1000

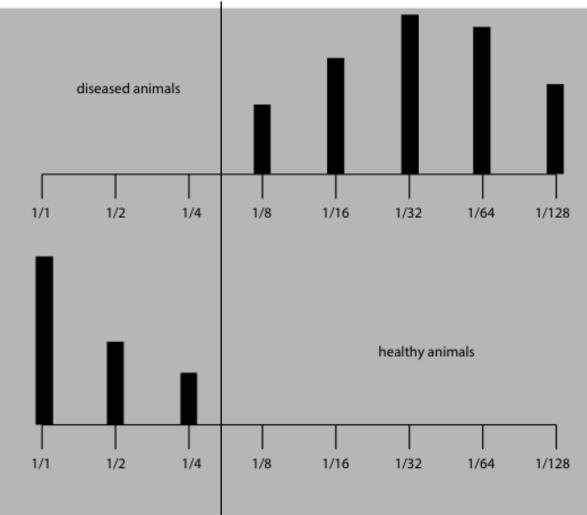
Test sensitivity is the likelihood that a diseased patient has a positive test Test specificity is the likelihood that a healthy patient has a negative test

Se = 180/200 = 0.9 Sp = 760/800 = 0.95

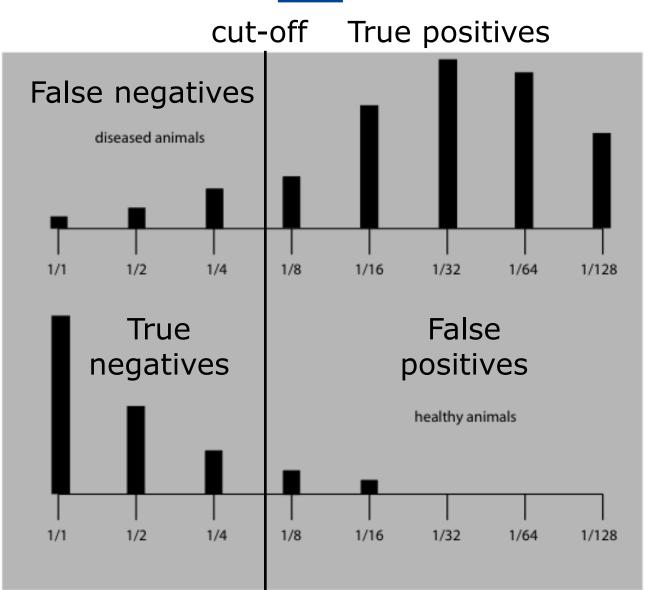


Sensitivity and Specificity

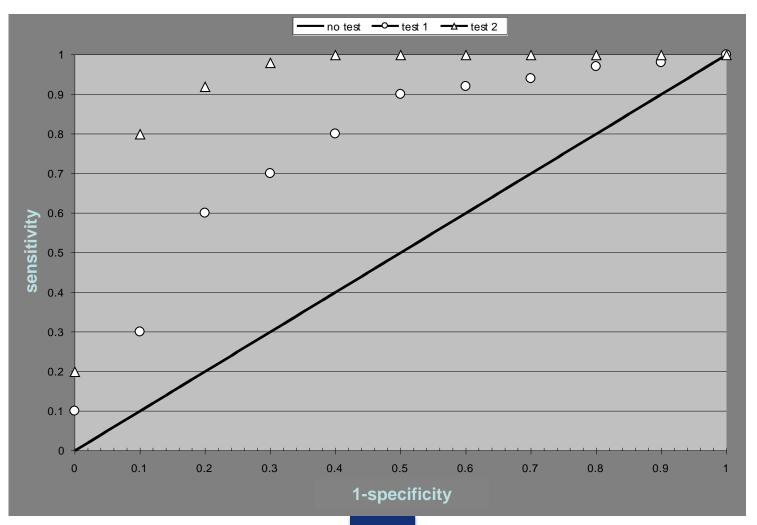
- Example: a serological test
- Results are function of the antibody concentration Elisa: OD, PP...
- *IFAT titre: maximum dilution at which the test is positive*
- Continuous or ordinal results are transformed in binary results (positive or negative) using a cutoff

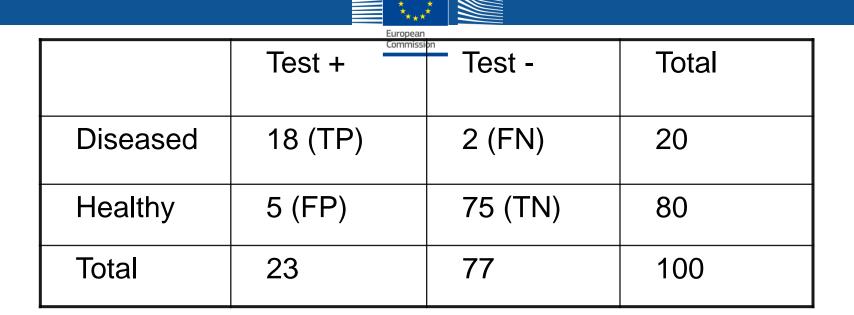


Example: Non-cumulative frequencies of IFAT titres



Gold standard



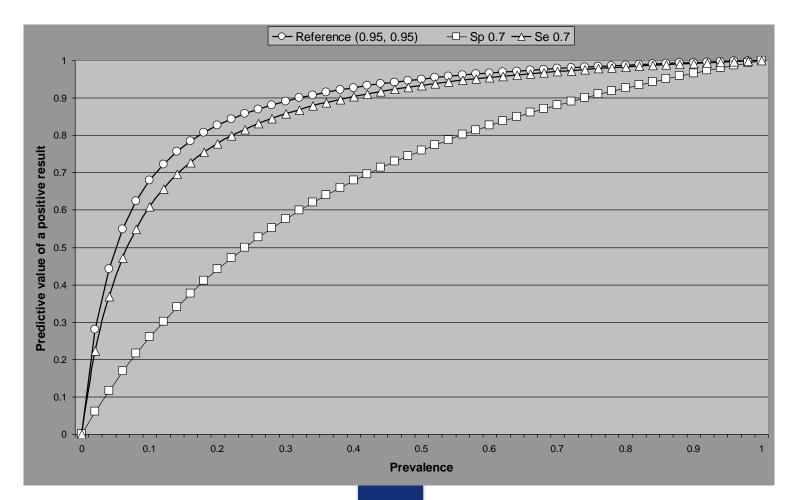

Receiver operator characteristic (ROC)

Predictive values

The predictive value of a test result is the proportion of patients who are correctly diagnosed. The predictive value of a positive result is the probability that a positive test reflects the underlying condition being tested for. The predictive value of a negative result is the probability that a negative test reflects the underlying healthy condition being tested for. Predictive values are conditional probabilities (definition of 'positive or negative')

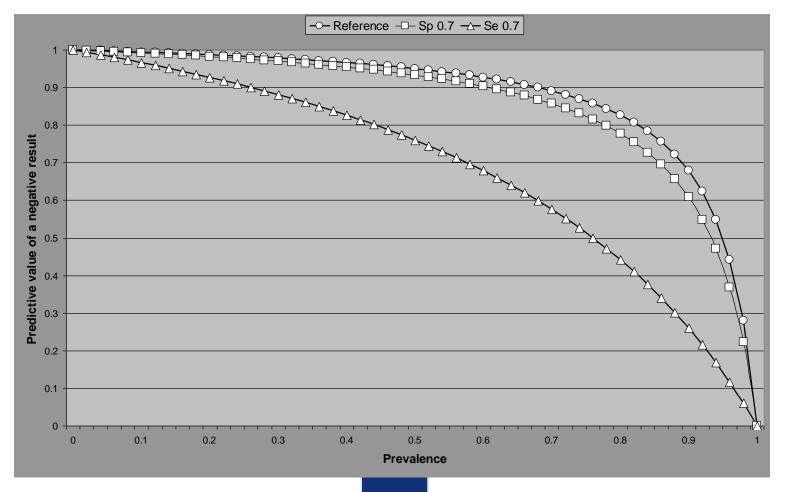
Sensitivity = TP/(TP+FN) = 18/20 = 0.9

Specificity = TN/(TN+FP) = 75/80 = 0.94


Prevalence = (TP+FN)/(TP+FN+TN+FP) = 20/100

Pred value + = TP/(TP+FP) = 18/23 = 0.78

Pred value - = TN/(TN+FN) = 75/77 = 0.97



Predictive value of positive results in function of the prevalence

Predictive value of negative results in function of the prevalence

Diagnostic test characteristics

Repeatability: in identical conditions Reproducibility: in different conditions Accuracy: calibration Precision: instruments & number of observations Cut-off: effect on sensitivity and specificity

=> Need for validated standard protocols
=> Need for proficiency testing

Quality assurance of test results

Quality assurance = Quality Control + Credibility Quality Control = Proficiency testing + Corrective actions

Use of existing standards

- To make activities comparable to others'
- To make activities verifiable (quality assurance)
- To benefit from quality assured by suppliers

Proficiency testing

Why?

- Legitimation of laboratory activities
- Determination of laboratory accuracy
- How?
 - Analytes
 - Split samples
 - Reference samples

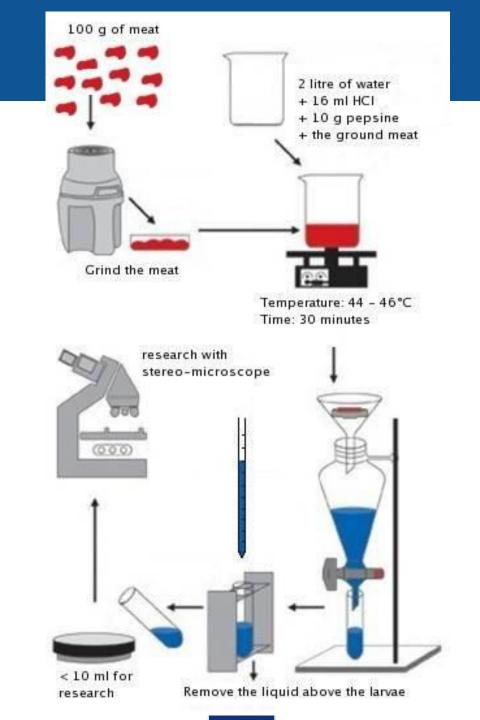
Usual working conditions

Statistical analysis and interpretation

Proficiency testing: the *Trichinella* example

Trichinella spiralis:

- Parasitic and zoonotic nematod
- transmitted from prey to predator e.g.: Rat – pig – rat
- Adults live in the gut
- Larvae are encysted in the muscles of the same host
- Surveillance in pig and horse meat

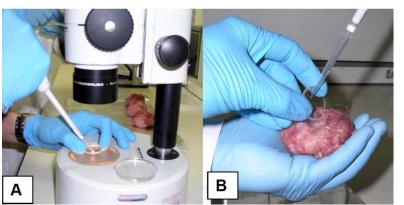


Diagnostic test: artificial digestion test

Artificial digestion of meat sample Sedimentation of the larvae Observation and counting using a stereoscopic microscope

Trichinella proficiency test

Preparation of proficiency samples Distribution of the samples to the participating laboratories (by courier) Detection and counting of larvae Report Analysis of the results Corrective measures



Test material

- Pig or horse meat
- 35 or 100 g meat balls
 - Count larvae in a watch glass
 - Flush all larvae in the meat
 - Pack, seal and send

Results (fictive)

Minimum detection level: 3 larvae

Minimum recovery: 40%

Laboratory	Sample code	Expected number	Number of	Binary	Result evaluation
		of larvae	larvae found	result	
L1	S1	0	0	0	ok
L1	S2	5	4	1	ok
L1	S3	8	8	1	ok
L1	S4	0	0	0	ok
L1	S5	11	10	1	ok
L2	S6	6	0	0	false negative
L2	S7	0	0	0	ok
L2	S8	9	3	1	low analytical sensitivity
L2	S9	10	5	1	low analytical sensitivity
L2	S10	0	0	0	ok
L3	S11	0	2	1	false positive
L3	S12	3	3	1	ok
L3	S13	7	8	1	more larvae observed than expected
L3	S14	0	0	0	ok
L3	S15	9	8	1	ok

Reference diagnostic tests and laboratories (animal health)

OIE: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals + reference laboratories **FAO** Reference Labs provide consultations, assist in making diagnoses and develop diagnostic capability, maintain a reference collection of disease agents, produce and standardize reagents and assist in characterization of causative agents and in training activities **EU** and **national** reference laboratories **ISO**: International Organization for Standardization